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Transient and Cyclic Behavior of Cellular Automata 
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One-dimensional cellular automata (CA) over finite fields are studied in which 
each interior cell is updated to contain the sum of the previous values of its two 
nearest neighbors. Boundary cells are updated according to null boundary 
conditions. For a given initial configuration, the CA evolves through transient 
configurations to an attracting cycle. The dependence of the maximal transient 
length and maximal cycle length on the number of cells is investigated. Both can 
be determined from the minimal polynomial of the update matrix, which in 
this case satisfies a useful recurrence relation. With cell values from a field of 
characteristic two, the explicit dependence of the maximal transient length on 
the number of cells is determined. Extensions and directions for future work are 
presented. 

KEY WORDS:  Cellular automata; discrete dynamical systems. 

1. I N T R O D U C T I O N  

Cel lu l a r  a u t o m a t a  ( C A )  are  d iscre te  d y n a m i c a l  sys tems  cons i s t ing  of  a 

r egu la r  a r r a y  of  cells, each  of  wh ich  can  be ass igned  a value.  ~  At  d iscre te  

t imes,  these  va lues  a re  c h a n g e d  ( u p d a t e d )  a c c o r d i n g  to  a p r e sc r ibed  rule. 

I n  this work ,  we dea l  exc lus ive ly  wi th  u p d a t e  rules  wh ich  are  based  on  a 

de te rmin i s t i c ,  M a r k o v i a n ,  loca l  t r an s i t i on  rule. N a m e l y ,  a n e i g h b o r h o o d  

rule  is g iven  which  specifies a finite, o r d e r e d  set ( n e i g h b o r h o o d )  o f  cells for  
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any given cell. After updating, the new value of a cell is a specified function 
(the local transition rule) of the values of its neighborhood cells before 
updating. 

An example which has been much studied is as follows. N cells are 
arranged circularly. The values stored in them are 0 or 1, regarded as the 
elements of the finite field with two elements, GF(2). (Notation is sum- 
marized in Appendix B.) These cells are assigned the indices 0, 1 ..... N -  1, 
which will be added as elements of the integers modulo N, ZN. The update 
times ti are a strictly increasing sequence of positive reals. Cell values 
remain constant during (ti, ti+ 1). Initial values for all cells are specified at 
time t = 0, with the value of the ith cell denoted xl ~ The value of the ith 
cell after the j t h  update (at time tj) is denoted xl s) and is determined by 

x(J)= xlJ ll) ~_ a~.(j 1) 
i J ~ i +  1 

where addition of cell values is in GF(2) and of indices is in Z N. The 
neighborhood cells of the ith cell are thus its nearest (contiguous) 
neighbors. The local transition rule is simply to add cell values. Because of 
the cell arrangement, this case is said to satisfy periodic boundary condi- 
tions. (~/ In the general setting, we use X (j) or X s to denote the ordered 
list of cell values during the j t h  time interval (the j t h  generation); 
Xj = (X(o s), x~J),..., x(~)_ 1 ), termed a configuration. The exact update times are 
generally not important; rather, we are interested in the sequence of 
configurations {Xj}. We denote the operator corresponding to application 
of the update procedure by T, i.e., Xj+I = T(Xj). X s is the predecessor 
of Xj+I, its successor. To emphasize that j enumerates "temporal" updates, 
we will often use t in place of j. 

We generalize the above by allowing certain boundary cells to follow 
a different update rule. For example, consider the case in which the peri- 
odic CA for N + 1 cells as above is implemented with two-state devices the 
zeroth of which fails in such a way that x~0 j) = 0 for j/> Jo. The transition 
rule for cells numbered 2 through N -  1 would be as before, but 

x]J)=x(9 j ~) and x~ )-'(j-~N-11) 

Equivalently, N cells could have been numbered 1 through N and arranged 
linearly. The neighborhood rule i--* ( i - 1 ,  i +  1) is then applicable to the 
interior cells (2 through N - - l ) ,  but not to cells 1 or N. Having a 
"neighborhood which extends outside the CA" distinguishes the latter as 
boundary cells, with their update covered by boundary rules. These rules 
are the CA analogs of boundary conditions for differential equations. We 
call such systems cellular automata with boundary, CA/B. The particular 
example just given will be designated Rule 90 with null boundary condi- 
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tions or simply our usual rule. This rule has been discussed by Wolfram,/1) 
which see for an explanation of the "Rule 90" description. With null 
boundary conditions, CA/B behave similarly to the periodic case and, in 
general, are of interest in their own right. 

When T is a linear transformation, its action can be represented by a 
matrix A (or A N to indicate its dependence on the number of cells) with the 
configuration written as a column vector, 

X j = A X j  1 = A J X ' o  

The fact that T comes from a local transition rule endows A with special 
structure. For example, the periodic case has been studied by Guan and 
He. (2) They consider the general linear rule of the form 

N 1 
t + l  X i = ~ a.x '( t)  

j = 0  

where the indices are summed modulo N and ajeGF(q).  Such rules give 
rise to a circulant matrix A with rows obtained by successive circular 
permutation of the first row. Using results about circulants, they obtain a 
great deal of information about the general properties of periodic CA from 
the eigenvalues and Jordan form for A. Previously, Martin et al. (3~ had 
obtained many of these results for Rule 90 using dipolynomials. 

2. P R E L I M I N A R I E S  

We now specialize to cellular automata with boundary having cell 
values in an arbitrary finite field, updated according to the usual rule. It is 
evident that the transition matrix A for this case is (1100 i) 0 1 0 

1 0 t 

0 1 

Because, for a fixed number of cells, there are only finitely many 
possible configurations, it is clear that starting from any initial configura- 
tion, the sequence of successive iterates eventually reaches a cycle (periodic 
orbit, including those of period one, the fixed points). The initial segment 
of configurations obtained before entering the cycle represents the transient 
behavior. In this paper we study the maximal transient length and maximal 



162 Stevens et  al. 

period as functions of the number of cells. We proceed with formal 
definitions of these quantities. 

Consider a given initial configuration Xo ~ 0 and its successor con- 
figurations Xt = AtXo, t E N. Either there exists t e N such that AtX o = 0 or 
there does not. If not, then because the total number of configurations is 
finite, it must happen for some i, j that AiXo = AJXo . More precisely, let 
N o x ~ be ordered lexicographically, i.e., (i, j )  < (k, l) if and only if i < k or 
i = k  with j < l .  Then there exists a smallest pair (t ,c) for which 
A~Xo = A t+ ~Xo. Note that c > 0. We call t the transient length and c the 
cycle length for the configuration Xo, denoting the dependence explicitly by 
t(Xo) and c(Xo). The maximal transient length ~ and maximal cycle length 
7 are then defined by 

max over all 
= t(X) 

initial configurations 

max over all 
7 = initial configurations c(X) 

When we wish to emphasize the dependence on the number of cells N, we 
use ~7 N and 7N' It may happen that for all X, there exists t such that 
A~X= O. In this nilpotent case, we define T to be the maximum such t over 
all configurations and 7 to be zero. 

3. T W O  I M P O R T A N T  P O L Y N O M I A L S  

For  7 = 0, A is a nilpotent matrix with A t = 0, i.e., the minimal polyno- 
mial of A is U. For  7 ~ 0, if Y and Z are configurations belonging to cycles 
of length ca and c2, respectively, then Y+ Z belongs to a cycle of length 
equal to the least common multiple of cl and c2. Thus, the length of any 
cycle is a divisor of the maximal cycle length. Moreover, if Xo is an initial 
configuration which has maximal transient length (~ > 0), then there exists 
a configuration Y such that A~Y=O and A ~ - ~ Y r  This statement 
follows because A*Xo = A~Z, where Z is on the cyclic orbit and therefore 
Y = Xo - Z is as claimed. 

By superposition, every cycle has transient "tails" of length z, i.e., 
starting from Y + X ,  where X is on the cycle. Because A~X=A~+~X 
for all X, A must satisfy the "transient and cycle" polynomial 
~ ( 2 ) = ) o ~ - 2 ~ + ~ - - - U ( 1 - 2  ~) over GF(q), i.e., q~(A)=0. If the minimal 
polynomial of A is/~(2) [ =/. tN(,~)]  , then/~(2)[ ~(2). If we know #(2), we 
show below that it is easy to find ~b(2) and consequently to find z and 7. 

The determination of ktu(2) is provided by the observation that the 
invariant factors of h i - A  are of the form 1, 1 ..... 1, p(2), i.e., the charac- 
teristic polynomial of A is the minimal polynomial of A. [Recall that if 
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~1(2),. . . ,  (~N(2) are the invariant factors of 2 1 - A  with ~i(2)1~y(2) for i<j,  
then bu(2 ) is the minimal polynomial of A ]  This observation follows 
readily from permuting the rows of - ( 2 1 - A )  to obtain 

t 1 - 2  1 0 0 0 1 - 2  1 0 

0 0 1 - 2  1 

0 0 1 - 2  

- 2  1 0 0 0 

from which it is clear that the l's on the diagonal can be used to annihilate 
the entries in the bottom row below them and then the entries in their row. 

Because #N(2) is equal to the characteristic polynomial of A, we have ( 10 o) 
- 1  2 - 1  

#N(2) = det . . . . . .  

0 --1 2 1 

0 0 - 1  2 N• 

- 1  2 - 1  

= 2- det . . . . .  

0 - 1  2 1 

0 0 - 1  N-IxN-1 (--lO i) 0 2 - 1  0 

_ - ( - 1 ) d e t  0 - 1  2 - 1  

0 0 - 1  N--lxN--1 

o r  #N(2)=2#N 1(2) - -  #N_2(~.) .  The initial conditions are #1(2)=2 and 
#2(2)=2 2 -  1 or, equivalently, #0(2)= 1 and #1(2)=2. This recurrence 
relation can be used to generate the minimal polynomials quite simply. 

It is of interest to develop an explicit representation for #u(2) by the 
method of generating functions. Let 

F(x)= ~ #i xi 
i=0  
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Then 

xF(x)= ~ #i_lx ~ and x2F(x)= ~ #~_2x ~ 
i = 1  i = 2  

Therefore 

F(x) -  )~xF(x) + x2F(x)= #o + #1x - '~o  x+ ~ (lti-  2#i-1 + #i 2) xi  
i = 2  

= 1 +,~x- ,~x+~ 0 x i =  1 

Thus 

1 1 
r ( x )  - 

1 -  2x + x z -  1 -  {x(2-- x) } 

i = O  i = O  j = O  

i = 0  j = 0  

i=o k=i k i 

= y '  ( - 1 )k - i  22i- kXk 
k=O i=rk/2q k i 

where the binomial coefficients are to be interpreted in GF(q) and I-x7 is 
the least integer ~> x. Consequently, 

(i) (-1) 
i=FN/2 7 N i 

We now examine the determination of 4(2) from #N(2). The nilpotent 
case (7 = 0) can be readily recognized by #N(2) = ,~N. Otherwise, #(2)1 ~(,~), 
giving q ~ ( E ) = U - U + ~ = # ( 2 ) ( a o + a 1 2 + - - .  +ak2  k) with a o # 0  by the 
minimality of r. Consequently, the first (lowest degree) nonzero term of 
~(2) is of degree r. Multiplication of #(2) by 2 i is equivalent to "shifting the 
components of the coefficient vector of #(2) i places to the right." Thus, i 
is chosen so that the lowest degree term of 2ikt(2) is of the same degree as 
the second lowest degree term in the product /~ (2 ) (ao+- - -+a i_ l~ i -1 ) .  
The coefficient ai is then chosen to annihilate that term and the process is 
repeated until only two terms of the form of ~(2) remain. With coefficients 
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in a Galois field, the argument for the existence of q5(2) shows that this 
process must terminate. (This fact is also evident from the theory of finite 
fields, as we shall see below.) This "shift and annihilate" algorithm is 
presented more formally in Appendix A. Output from a program based on 
this algorithm is given in Table I over GF(2) for N up to 40. A straight- 
forward modification allows the determination of cases for which 
#(2)[2T+ U +h. In this situation A~+hX= -A~X. If the state values [com- 
ponents of X in GF(q)] have been graphically represented by colors, then 
this occurrence would be a "color reversal," i.e., the color of the ith cell at 
the v + h generation is the "negative" of its color at generation v, giving 
7 = 2h. Similarly, one can search for other color permutations, i.e., 
A~+kX= ~A~X, a ~ GF(q). 

It is desirable to be able to compute VN and ]/N easily. Certainly, the 
algorithm discussed above represents an improvement over the direct 
exercise of the CA rule, even if the generation to be repeated is known 
in advance. Below we show that "ON is easy to obtain. Indeed, Z2m = 0 
immediately by induction, using #o(2)= 1 and the recurrence relation. VN, 
on the other hand, appears to be quite difficult, even though interesting 
relationships can be developed. We proceed to examine an algebraic 
approach to determining 7 which displays some of the inherent difficulties. 

4. D E T E R M I N A T I O N  OF THE M A X I M A L  CYCLE LENGTH,  ~/N 

Instead of beginning with a general treatment, we look at several 
specific cases over GF(2). Focusing on 78 = 14 from Table I, we see that 
/~8(2)= 1 +J~4-k-,)~6-k-)~8--=(1 q-,~2-b23+24)2. [-Over GF(pk), (q(2))P=q()~P).] 
Because there are an even number of terms in the latter, it is clear that 
it is divisible by 1 +2.  Thus (1 + 2 )  2 (1 + 2 + 2 3 )  2 is the factorization of 
p8(2) into irreducible polynomials. We recall several useful facts about 
polynomials over finite fields. For  a polynomial f (2 )  over a finite field such 
that f ( 0 ) r  0, the order off(2), ordf ,  is the smallest natural number e such 
that f (2 ) l  (2 e -  1). If f (0 )  = 0 and f (2 )  = 2hg(2), with h E N and g(0) r 0, 
then o r d f  is defined to be ord g. Consequently, "~N = ord #N()~). It can be 
easily shown that if f (2 )  is irreducible of degree m over GF(q), then ord f 
equals e if and only if every root of f ( 2 ) =  0 h~ts period e. Moreover, 
e[q m - 1. Such a polynomial is called primitive if it has a root in GF(q m) 
of order qm_ 1. The multiplicative group of GF(q m) is a cyclic group 
generated by a primitive root, the existence of which is guaranteed. 
Evidently, the order of a primitive polynomial is maximal, i.e., q m  1. 

Returning to the case N = 8, we see that the factor 1 + 2 + 23 has order 
7, because 2 3 -  1 = 7  is prime. Over a field of characteristic p, it is 
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straightforward to show that ord f ( X )  m= m ord f (X )  for m a power of p. 
Consequently, ord(1 + 2 + 23) 2 = 14. Because (1 + 4) 2 l1 + 214, #(4)[ 1 + 214. 
Thus 14 is the smallest exponent for which this divisibility condition holds. 
It follows that (b8(2) = 1 + 414 and 78 = 14, as previously observed. 

We pursue this approach further by examining the case 

~12(4) = 1 --[-22--[-~8---~'210---[-212= (1 -~-2- [ -24-q-25~-46)  2 with ~12 = 126 

Factoring a polynomial into a product of irreducible polynomials can be 
accomplished via Berlekamp's algorithm. (4) Incorporating such algorithms, 
symbolic computing products, such as Mathematica, provide the facility for 
rapid factorization. (5~ In addition, a table of irreducible polynomials over 
GF(2) and their orders through degree 19 is available. (6) In this case, 
1 + 2 + 24 + 25 + 26 is irreducible. Its order must be a divisor of 26 - 1 = 63. 
From the table, we find that it has order 63, giving 712 = ord #12 = 2-63 = 126. 

For  N even, equal to 2m, the recurrence relation or the explicit form 
for #N(2) over GF(2) shows that 

IA2m = ~ ai22i= [/22m(4)] 2 
i=0 

where 

/22m(4)= ~ ai4 i, ai~GF(2), a o = l  
i--O 

Thus 72m ~< 2 (  2m - -  1 ). This bound will occur when/22m(4 ) is irreducible and 
primitive. In this sense, the period for the case N = 12 is maximal. Through 
40, the even values of N having maximal period are 2, 4, 6, I0, 12, 18, 22, 
and 28. 

One final example for N even will suffice, namely, the factorization of 

/t38(2) = [(1 + 2)(1 + 2 + 44 -3i- 45 -~- 4 6) 

X ( l  "~- 4 -~- 43 "~- 24 "-]- 45 "[- 46 "~- 47 "3ff 48 -[- /~ 11 + 2 1 2 ) ]  2 

The orders to which the factors in brackets belong are 1, 63, and 1365, 
respectively. By their irreducibility, these polynomials have no common 
roots. Because 2 m - -  1 12 n - -  1 if and only if m ln, the smallest value of k for 
which 1 + 2 k is divisible by the product of these factors is 4095, the least 
common multiple of 1, 63, and 1365. Consequently, #38(4) first divides 
1 "[-4 2"4095, i.e., 738 = ord/z38 = 8190, which agrees with the tabulated value. 

Cases with N odd can be treated similarly by first writing I~N(2 ) 
as 4T[-j~N(4)'] 2, where ] ] N ( 4 )  =~- '~  g ai 4i, g =  ( N -  r)/2, ao r  For i=0 
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example, //9(2) = 2(1 + 24 + 28) = 2(1 + 2 + 22) 4. Consequently, ?9 ~- 
4. ord(1 + 2 + 2 2) = 4 .3  = 12. Similarly, / / 2 7 ( 2 )  = 23(1 + 216 Jc 2 24) = 

23(1 + 22 + 23) 8, giving ?27 = 8 "7 = 56. 
For  the case of N odd, we show below a stronger relation between ?N 

and rN, but for now we state the following result, which summarizes the 
findings for N odd or even: 

For  given N over GF(2) [or  GF(2k)], the minimal polynomial / / N ( 2 )  

can be written as  2"c[].~N(2)] 2, where fiU(2)=•gi_oai 2i, g= (N--ZN)/2, 
and aova0. If [tN(2)=fl(2) ' ' ' fs(2 ) with these factors pairwise relatively 
prime, then 7N is twice the least common multiple of ord f~ ..... ord fs- In 
particular, ?N ~ 2( 2g -- 1 ). 

5. D E T E R M I N A T I O N  OF THE M A X I M A L  T R A N S I E N T  
LENGTH "(;N 

We can discover more about ?N and "c N by exploiting the fundamental 
recurrence relation more fully. Note that //N=2//N_I--//N 2 can be 
written 

//N=//1//N 1 --//0//N 2 

which prompts us to suspect the general form 

/ /N=/ / i / /N  i - - / / i  1//N i 1 

This relationship is easily proved by induction: 

/ /N=2//N--1--]- tN 2 

=2(m//N l - , - - m - 1 / / u - 2 - , ) - - ( / / i / / N  2 ,--m--l//U--3--3 

= / / i ( 2 / / N - l - i - - / / N  2 i ) - - / / i - - l (2 / /U--2- - i - - / /N--3  i) 

= //i//N i--/ / i--1//U--i--1 

For the remainder of this section, let us suppose that the underlying 
field is of characteristic 2. Then 

/ /2N+ 1 = / /  N # N  + I -~- / / N - -  I / / N  

= //N(2//N q- //N--1) ~- //N I//N 

=/ /N(2/ /N~-/ /N--1  + / / N - -  l) 

o r  
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Le t  the  b i n a r y  e x p a n s i o n  of  N be  ~.~=0 a i T ,  whe re  k =  [_log 2 N J  a n d  ai=O 
or  1. Def ine  l =  l N a s  m i n { i l  a i = 0 } ,  whe re  a k + l  = 0 .  T h e n  we c l a im  

z = ~ N = 2  t -  1 

If  N is even,  t hen  l equa l s  zero ,  g iv ing  "c = 0 as requ i red .  If  N is odd ,  we can  

r e p e a t e d l y  a p p l y  /~N = 2#~N/2J to  o b t a i n  

~N = 2(/~(""" ('~/2m) 2"'" )2 

~t 2 / 
= ' ~ # m  

where  t = 1 + 2 + ---  + 2 I -  1 a n d  m = (N- -  t)/U is even.  T h e  c o n s t a n t  t e rm  

of  ]~m is one ,  t hus  iden t i fy ing  "c N = t = 2 t -  1 a n d  7N = 2I'~rn" 

W e  i l lus t r a t e  this  resu l t  w i th  severa l  examples .  F i r s t ,  lN = k + 1 if a n d  
on ly  if N = 2 k + 1 _ 1, in wh ich  case  ~'u = 2 l -  1 = 2 ~ + 1 _ 1 = N. In  o t h e r  

words ,  N = 2  k + ~ -  1 if a n d  o n l y  if # u = 2  N. E q u i v a l e n t l y ,  for  a n y  in i t i a l  
c o n f i g u r a t i o n ,  i ts N t h  succes so r  XN equa l s  the  qu ie scen t  c o n f i g u r a t i o n  
0 = (0,..., 0)  and ,  for  s o m e  in i t i a l  c o n f i g u r a t i o n ,  XN_ ~ r O. 

N e x t  c o n s i d e r  N = 87 = (1010111)2,  for  wh ich  l = 3, z = 23 - 1 = 7, a n d  
m = (87 - 7)/23 = 10. T h u s  

87 = ( 1 0 1 0 1 1 1 ) 2 =  (1010)2 x 23 + (111)2 

I ndeed ,  in genera l ,  

= 1 0 x 2 3 + 7  

kth /th 0th-order bit 

+ + + 

N = ( 1 - . . 0 1 - . . 1 ) 2  
all l's 

= m  . 2 t + ~  

where  r = z N a n d  ~)N = 2t7,, . 

6. S O M E  S P E C I A L  C A S E S  

F o r  N even,  e q u a l  to  2m, ove r  a field of  c h a r a c t e r i s t i c  two,  

#N=]~2m=[Lrn#m"}"#m 1J,lm-- 1 

= (# , ,  + ~tm 1) 2 

wh ich  ident i f ies  ]~N [i.e., / ~ u  = (/~U) 2, as d i scussed  e a r l i e r ]  as #m "31-J'Lrn-1 " 
As  we k n o w ,  ]~N m a y  or  m a y  n o t  be  fu r the r  r educ ib l e  (viz. N =  12) a n d  
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consequently n o  general factorization can result from this approach. 
A fairly quick route to obtaining ]~N is provided, however, e.g., 

1"/20 = (/~10 -[- ~9) 2 

= [ ~ +  ( I  + ~) ~d] ~ 

= [(1 + 2 +  2=) ~4+ (1 + 2) #~] = 

= [(1 + 2 + 22)(1 + 28) + (1 + 2) 24] 2 

= ( 1 + 2 + 2 2 + 2 4 + 2 5 + 2 8 + 2 9 + 2 1 ~  

In certain instances, however, we can determine ~N using this approach. 
If N =  2 k, we claim # u ( # u  + 2u) = (1 + 2 N 1)2 ----= 1 -k- 2 2 ( u -  1). We proceed 
by induction on k with 

~ ( ~  + 2 ~)  = (u~/2 + 2 ~ -  2 ) (~ /~  + 2 N-~ + 2 ~ ) 

having used 

2 2 2 (2N/2-- 1)2 2 ..t_ 2N-- 2 
]~ N ~-- I~ N/2 -~- ~ N/2 - -  1 "~- ]~ N/2 -{- = # N/2 

Thus 

~N(]IN. . .~  2 N )  4 2 N..jff 2 2 N - - 4  22N 2 
= ]JN/2 -}- ]~N/22 "r 

= []~N/Z(#N/2 Aft 2N/2)'] 2 "t- 2 2 N - 4  ~- 2 2 N - 2  

which, upon applying the induction hypothesis to the first term, is equal to 

(1 -'[-2 N/2 1)4-~-22N--4"~-22N--2= 1 q-22N 4 q - 2 2 N - 4 + 2 2 N - - 2  

= ( 1  + 2 N - - l )  2 

At this point, it is clear that 7N]2(N- -1 ) ;  it is in fact equal to 2 ( N - 1 ) .  
We have not found an "algebraic" proof, but a "geometric" one can be 
obtained by showing that for e =  (1, 0 ..... 0)N, A i e #  e for 0 < i <  2 (N--1) .  
We omit the details here. Further, note that for N = 2 ~ 

].,LN=2I..t N 1Af-[,LN 2 = 2 - 2N-- 1 -~- /,tN_2 

~-----2N"{-I'tN 2 

Thus # N + 2 N = # N _ 2 ,  giving #Nla N 2 = 1 +22{N-~). Again a geometric 
argument can be used to convert 7N_212(N--1)  to 7N 2 = 2 ( N  - 1). 

We summarize these results in Table II. The 7 values for N =  2 k -  3 
and 2*:+ 1 are obtained using the reduction for odd degree which results 
in known even cases (2 k-  ~ and 2 k 2_  2, respectively). From the table, it 
is clear that there exists a cluster of values for the number of cells around 
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Table II. Cycle Lengths Around 2 k 

Number of Corresponding ~ as function 
cells N value of 7 of N 

2 k - 3  2(2 ~ - 2 )  2 (N+ 1) 
2 k - 2  2(2 k -  1) 2 (N+ 1) 
2 k -  1 0 0 
2 k 2(2 ~ -  1) 2 ( N -  1) 
2k+ 1 2(2k--2) 2 ( N -  3) 
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the powers of two for which the cycle lengths are small compared to the 
maximal value of 2(2 g -  1), g =  (N--zu)/2. Additional relations can be 
obtained, e.g, for 2~+ 3, but 7 cannot be obtained in an obvious fashion 
for other values, e.g., 2k+ 2. Indeed, while 716 = 3 0 ,  718 = 1022, the maximal 
value. For 2k+ 2, 7 is generally "large," though not necessarily maximal. 

7. S U M M A R Y  A N D  D ISCUSSION 

Although we have emphasized the determination of zN and 7N, many 
other facets of CA behavior can be elicited by the present approach. 
For the rule under consideration, A is nonsingular if and only if N is 
even. In this case, the state diagram (the directed graph with vertices corre- 
sponding to configurations and directed edges, to the successor relation- 
ship) consists of pure cycles. The structure of the state diagram can be 
obtained from the knowledge of the elementary divisors of A (in our case 
the irreducible factors of #) and their orders. For example, for N =  8, 
#(2) = (2 + 1)2 ()3 + 2 + t)2 implies the existence of seventeen 14-cycles, 
two 7-cycles, one 2-cycle, and two fixed points (one being the zero vector). 
The matrix which brings A into its classical canonical form (y) can be used 
to obtain an explicit configuration labeling of the state diagram. 

For N odd, the nullity of A is one. Thus a configuration has either no 
predecessor or two predecessors. The state diagram then consists of cycles 
with binary trees of height l N rooted at each vertex of a cycle. Again, the 
elementary divisors of A determine the state diagram. 

We emphasize that for any linear rule (local transition plus boundary) 
which updates according to X,+I =AXt the minimal polynomial of the 
update matrix plays an important role. The determination of 7N as the 
order of/t  N (and by the algorithm of Appendix A) and ~'u as the degree of 
the first nonzero term of ~U are general results. 

We now summarize our findings for the CA/B updated by Rule 90 
with null boundary conditions. Two facts are responsible for the results 
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particular to this rule. First, the minimal polynomial of A is its charac- 
teristic polynomial, independent of the characteristic of the underlying field. 
This felicitous situation may not be the case for other rules, e.g., for peri- 
odic boundary conditions, #4(2 )  is ~2 if the characteristic is 2 and is 2 3 --  42 
in all other cases. Second, the structure of A provides a valuable recurrence 
relation for #N which is valid over any finite field. Thus our results are 
derived from the special structure of A for the rule being studied, as can 
results for the periodic case be obtained from the properties of circulant 
matrices. However, quite generally A will possess banded or nearly banded 
structure because it is based on a local transition rule, with boundary rules 
affecting at most a few of the first and last rows. Moreover, because a "near 
copy" of AN_ 1 will be a submatrix of AN, the search for recurrence rela- 
tions between the characteristic and minimal polynomials for N, N - 1  ..... 
may provide a fruitful line of attack. 

Further results were then obtained by exploiting the recurrence 
relation in a particular finite field or one of given characteristic. Such an 
approach allowed our determination of 7N for special values of N over 
fields of characteristic two. z:v was found to be 2 j -  1 where 2 j divides 
N +  1 but 2 j + l  does not. We speculate that over GF(p~), ZN for our rule 
is in general related to the divisibility of N +  1 by p, e.g., we conjecture that 
over GF(3), ZN = 3 j (Nodd)  where 3 j divides N +  1 but 3 j§ does not. 

As suggested by the above example, there are many possible exten- 
sions and generalizations of the subject at hand. We delineate only a few. 
For  our usual rule, is it possible to obtain a simple formula or rule for VN? 
HOW do ZN and 7N depend on the underlying field? These questions are, of 
course, of interest for other local transition and boundary rules as well. 
Our results depend on the underlying algebraic object being a field, which 
thus provides the tools of linear algebra. What results can be obtained 
in more general cases and by what means, e.g., when the whole is carried 
over Zn? 

The present approach can be extended to two- or higher-dimensional 
CA, in some cases rather easily. For  the update rule 

x ( t + l ) _  (t) .v(t)  _t .~.(t) + , , . ( t )  
i,j - - X i - l , j " ~ ' i + l , j - - ~ i , j  1 - - " ~ i , j +  1 

with null boundary conditions, if X, represents the matrix of cell values, 
then it is updated by X , + I =  X , A  + AXt ,  where A is our usual one-dimen- 
sional update matrix. Using this representation, one-dimensional results 
have immediate application in the two-dimensional case. We shall not 
pursue this connection further here. Finally, a two-dimensional array of 
cells can, by suitable specification of neighborhood and boundary rules, be 
given a variety of "boundary treatments," i.e., identified so as to have the 
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cells on a cylinder, M6bius strip, torus, Klein bottle, or projective plane. 
It would be interesting to investigate the role of their topology in the 
behavior of such cellular automata. 

APPENDIX A. ALGORITHM TO DETERMINEq~(h)  FOR 
GIVEN NUMBER OF CELLS 

1. For given number of cells N, compute/~(2) = ~ N ( ~ ) ;  D,  = degree 
#(2). (Here D,  = N.) 

2. Determine the degree z of the term of #(2) of lowest degree, with 
its nonzero coefficient denoted cr 

3. If z - -Du ,  print (z, 0) and stop; otherwise proceed. 

4. Replace #(2) by ~-1#(2). (The lowest degree term will now have 
coefficient 1.) 

5. P(2) ~- #(2); Dp *- Du. 

6. Determine the degree D of the second lowest degree term of P(2) 
having nonzero coefficient c. 

7. If D ~ = D  and c =  -1 ,  exit loop (step 10). 

8. P(2) *-- P()~) - c2 D -~/~(2); Dp +- D~, + D - ~. 

9. Repeat from step 6. 

10. Print (z, I) = De -- z). 

11. Stop. 

APPENDIX B. NOTATION 

A 
C(Xo) 

Gr(q) 

N 

No 

t(Xo) 
x I j)  

Xj 

Z ,  

= A N ,  the update matrix such that Xt+l = AX,  (Section 1) 
Length (period) of the cycle reached from the initial configura- 
tion Xo (Section 2) 
The finite field of q elements where q = p~ for some prime p; 
GF(p) is Zp 
The natural numbers { 1, 2, 3,...} 
The nonnegative integers {0, 1, 2,... } 
The transient length for the initial configuration .go (Section 2) 
The value of the ith cell after j updates of the initial configura- 
tion; equivalently, the ith component of the configuration Xj 
(Section 1 ) 
The N-vector of cell values after j updates of the initial con- 
figuration X o (Section 1) 
The integers modulo n 
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2 
# 
"E 

Lx/ 
I-x] 

=TN, the maximal cycle length over all initial configurations 
(Section 2) 
Indeterminate of the ring of polynomials over GF(q) 
=#N(2), the minimal polynomial of A N (Section 3) 
= ~u, the maximal transient length over all initial configurations 
(Section 2) 
= ~(2), the transient and cycle polynomial (Section 3) 
The greatest integer less than or equal to x 
The least integer greater than or equal to x 
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